Case – 2 P-H Diagram Analysis for Multiple Refrigeration Loads Compound System

Copy Right By: Thomas T.S. Wan (溫到祥) June 4, 1997 All Rights Reserved

Case Background:

The purpose of this case is to illustrate:

- (I) Use of P-H diagram method to analysis the refrigeration system in accordance with the specification given for a compound refrigeration system with multiple refrigeration loads.
- (II) Layout the refrigerant flow diagram conforms to the P-H diagram.
- (III) How to calculate the refrigerant flows and power consumption based on the P-H diagram to meet the refrigeration loads as specified.

The Refrigeration System Specifications:

This refrigeration unit is with water cooled condenser, R-717 refrigerant, 460-3-60 power supply for Class 1, Group D, Division II area installation.

The unit is to be designed to handle three evaporative loads and is to be designed in accordance with the parameters and requirements as indicated below; all the evaporators are provided by the user and are remote mounted:

Evaporator No. 1:

The refrigeration capacity is 260 TR at evaporative temperature of -40°F.

Evaporator No. 2:

The evaporator is located at the same area as evaporator #1; same external piping pressure drop and superheat as the evaporator #1.

The refrigeration load is 30 TR to cool special brine from -20° F to -26° F leaving. The evaporative temperature required for this heat exchanger is to be -35° F.

Evaporator No. 3:

The refrigeration load is 80 TR to cool Ethylene Glycol Brine from 37°F to 30°F with an ET of 20°F, The external piping suction pressure drop and suction superheat allowed it to be given to the user to allow the user to make proper design of the suction piping for the heat exchanger.

Screw compressors are to be used for the compound system; no economizing is allowed for the compressors. Flash type intermediate intercooler with coil for liquid subcooling is to be used; 15°F approach to the intermediate temperature for the design is 15°F.

The screw compressor is with liquid injection oil cooling; assuming no power and capacity penalties for the oil cooling arrangement; pre-lube oil pump is used.

Assume compressor adiabatic efficiency is as the following:

For the booster compressor:	75%
For the high stage compressor:	75%

The mechanical efficiencies of the compressors for the calculation are 97%.

Remote water cooled condenser is used. The condenser is supplied by the user. The design condensing temperature is 105°F. The ambient design temperature is 91°FDB and 82°FWB.

Piping pressure drops and superheats limitations are as the following:

Booster compressor suction: Minimum piping pressure drop is 1.6 Psi; the maximum pressure drop for the suction valve, strainer and the check valve assembly of the compressor is 0.8 Psi; the suction superheat is 10°F.

High stage compressor suction: Piping pressure drop is 0.5 Psi; the pressure drop for the suction valve, strainer and the check valve assembly is.6 Psi; the suction superheat is 5°F.

High stage compressor discharge: The external piping pressure drop is 2.8 Psi; oil separator and discharge valve pressure drop is 4.3 Psi.

Low stage compressor discharge: The external piping pressure drop is 0.4 Psi; oil separator and discharge valve pressure drop is 3.5 Psi.

The information from this system design exercise as the following:

- A. A report to outline the design concept, approach and consideration for the refrigeration system.
- B. A detail P-H diagram to show all the operating conditions, enthalpy points and the refrigerant flows.
- C. A detail refrigerant diagram showing all the operating conditions and the refrigerant flow rates in Lbs/Min on the flow diagram.
- D. Fill in the Summary Data Sheet show below:

Maximum superheat and pressure drop for the	
Evaporator #3,	
Max. pres. drop, Psi	
Max. superheat, °F	
Booster Compressor Suction:	
Suction Pressure, Psia	
Suction Temp., °F	
Suction Flow, Lbs/Min	
Suction Flow, ACFM	
High Stage Compressor Suction Conditions:	
Suction Pressure, Psia	
Suction Temp., °F	
Suction Flow, Lbs/Min	
Suction Flow, ACFM	
Power Consumption Conditions:	
Booster Compressor, BHP	
High Stage Comp., BHP	
Heat Rejection from condenser, MBH	
Refrigerant flow to the condenser: Lbs/Min.	

Related Technical and Engineering Data for the Calculation:

Figure-2-1 Pressure-Enthalpy Diagram of Ammonia

TEMP	PRES 1b per	SURE sq in	VOL cuít	JME per 1b	DENS 1b per	BITY r cu ft	I	ENTHALPY Stu per 11	••	ENTRO Btu per ())py ** (b) (⁰ R)	TEMP P
ι	Absolute P	Gage p	Liquid ^V f	Vapor ^V g	Liquid ^{1/v} f	Vapor 1/vg	Liquid ^h f	Latent ^h fg	Vapor hg	Liquid ^S f	Vapor ^S g	t
-45 -44 -43 -42 -41	8.95 9.23 9.51 9.81 10.10	11.7* 11.1* 10.6* 10.0* 9.3*	0.02310 .02313 .02315 .02317 .02320	28.62 27.82 27.04 26.29 25.56	43.28 43.24 43.20 43.16 43.11	0.03494 .03595 .03698 .03804 .03912	- 5.3 - 4.3 - 3.2 - 2.1 - 1.1	600.9 600.3 599.6 596.9 596.3	595.6 596.0 596.4 596.8 597.2	-0.0127 0102 0076 0051 0025	1.4368 1.4342 1.4317 1.4292 1.4267	-45 -44 -43 -42 -41
-40 -39 -38 -37 -36	10.41 10.72 11.04 11.37 11.71	8.7* 8.1* 7.4* 6.8* 6.1*	0.02322 .02324 .02326 .02328 .02328 .02331	24.86 24.18 23.53 22.89 22.27	43.07 43.03 42.99 42.95 42.90	0.04022 .04135 .04251 .04369 .04489	0.0 1.1 2.1 3.2 4.3	597.6 596.9 596.2 595.5 594.8	597.6 598.0 598.3 598.7 599.1	0.0000 .0025 .0051 .0076 .0101	1.4242 1.4217 1.4193 1.4169 1.4144	-40 -39 -38 -37 -36
-35 -34 -33 -32 -31	12.05 12.41 12.77 13.14 13.52	5.4* 4.7* 3.9* 3.2* 2.4*	0.02333 .02335 .02338 .02340 .02343	21.68 21.10 20.54 20.00 19.48	42.86 42.82 42.77 42.73 42.69	0.04613 .04739 .04868 .04999 .05134	5.3 6.4 7.4 8.5 9.6	594.2 593.5 592.8 592.1 591.4	599.5 599.9 600.2 600.6 601.0	0.0126 .0151 .0176 .0201 .0228	1.4120 1.4096 1.4072 1.4048 1.4025	-35 -34 -33 -32 -31
-30 -29 -28 -27 -26	13.90 14.30 14.71 15.12 15.55	1.6* 0.8* 0.0 0.4 0.8	0.02345 .02347 .02350 .02352 .02355	18.97 18.48 18.00 17.54 17.09	42.65 42.61 42.56 42.52 42.48	0.05271 .05411 .05555 .05701 .05850	10.7 11.7 12.8 13.9 14.9	590.7 590.0 589.3 588.6 587.9	601.4 601.7 602.1 602.5 602.8	0,0250 .0275 .0300 .0325 .0350	1.4001 1.3978 1.3955 1.3932 1.3909	-30 -29 -28 -27 -26
-25 -24 -23 -22 -21	15.98 16.42 16.88 17.34 17.81	1.3 1.7 2.2 2.6 3.1	0,02357 .02360 .02362 .02364 .02364 .02367	16.66 16.24 15.83 15.43 15.05	42.44 42.39 42.35 42.31 42.26	0.06003 .06158 .06317 .06479 .06644	16.0 17.1 18.1 19.2 20.3	587.2 586.5 585.8 585.1 584.3	603.2 603.6 603.9 604.3 604.6	0.0374 .0399 .0423 .0448 .0472	1.3886 1.3863 1.3840 1.3818 1.3796	-25 -24 -23 -22 -21
-20 -19 -18 -17 -16	18.30 18.79 19.30 19.81 20.34	3.6 4.1 4.6 5.1 5.6	0.02369 .02371 .02374 .02376 .02376 .02378	14.68 14.32 13.97 13.62 13.29	42.22 42.18 42.13 42.09 42.05	0.06813 .06985 .07161 .07340 .07522	21.4 22.4 23.5 24.6 25.6	583.6 582.9 582.2 581.5 580.8	605.0 605.3 605.7 606.1 606.4	0.0497 .0521 .0545 .0570 .0594	1.3774 1.3752 1.3729 1.3706 1.3686	-20 -19 -18 -17 -16
-15 -14 -13 -12 -11	20.88 21.43 21.99 22.56 23.15	6.2 6.7 7.3 7.9 8.5	0.02381 .02383 .02386 .02388 .02388 .02391	12.97 12.66 12.36 12.06 11.78	42.00 41.96 41.91 41.87 41.82	0,07709 .07898 .08092 .08289 .08490	26.7 27.8 28.9 30.0 31.0	580.0 579.3 578.6 577.8 577.1	606.7 607.1 607.5 607.8 608.1	0.0618 .0642 .0666 .0690 .0714	1.3664 1.3643 1.3621 1.3600 1.3579	-15 -14 -13 -12 -11
-10 - 9 - 8 - 7 - 6	23.74 24.35 24.97 25.61 26.26	9.0 9.7 10.3 10.9 11.6	0.02393 02395 02398 02401 02403	11.50 11.23 10.97 10.71 10.47	41.78 41.74 41.69 41.65 41.60	0.08695 .08904 .09117 .09334 .09555	32.1 33.2 34.3 35.4 36.4	576.4 575.6 574.9 574.1 573.4	608.5 608.8 609.2 609.5 609.8	0.0738 .0762 .0786 .0809 .0833	1.3558 1.3537 1.3516 1.3495 1.3474	-10 - 9 - 8 - 7 - 6
- 5 - 4 - 3 - 2 - 1	26.92 27.59 28.28 28.98 29.69	12.2 12.9 13.6 14.3 15.0	0.02406 .02408 .02411 .02414 .02416	10.23 9.991 9.763 9.541 9.326	41.56 41.52 41.47 41.43 41.38	0,09780 .1001 .1024 .1048 .1072	37.5 38.6 39.7 40.7 41.8	572.6 571.9 571.1 570.4 569.6	610.1 610.5 610.8 611.1 611.4	0.0857 .0880 .0904 .0928 .0951	1.3454 1.3433 1.3413 1.3393 1.3372	- 5 - 4 - 3 - 2 - 1
0 1 2 3 4	30.42 31.16 31.92 32.69 33.47	15.7 16.5 17.2 18.0 18.8	0.02419 .02422 .02424 .02427 .02427 .02429	9.116 8.912 8.714 8.521 8.333	41.34 41.29 41.25 41.20 41.16	0.1097 .1122 .1148 .1174 .1200	42.9 44.0 45.1 46.2 47.2	568.9 568.1 567.3 566.5 565.8	611.8 612.1 612.4 612.7 613.0	0,0975 .0998 .1022 .1045 .1069	1.3352 1.3332 1.3312 1.3292 1.3273	0 1 2 3 4
5 6 7 8 9	34.27 35.09 35.92 36.77 37.63	19.6 20.4 21.2 22.1 22.9	0,02432 .02435 .02438 .02440 .02443	8.150 7.971 7.798 7.629 7.464	41.11 41.07 41.02 40.98 40.93	0.1227 .1254 .1282 .1311 .1340	48.3 49.4 50.5 51.6 52.7	565.0 564.2 563.4 562.7 561.9	613.3 613.6 613.9 614.3 614.6	0.1092 .1115 .1138 .1162 .1185	1.3253 1.3234 1.3214 1.3195 1.3176	5 6 7 8 9
10 11 12 13 14	38.51 39.40 40.31 41.24 42.18	23.8 24.7 25.6 26.5 27.5	0.02446 .02449 .02451 .02454 .02454 .02457	7.304 7.148 6.996 6.847 6.703	40.89 40.84 40.80 40.75 40.71	0.1369 .1399 .1429 .1460 .1492	53.8 54.9 56.0 57.1 58.2	561.1 560.3 559.5 558.7 557.9	614.9 615.2 615.3 615.8 616.1	0,1208 1231 1254 1277 1300	1.3157 1.3137 1.3118 1.3099 1.3081	10 11 12 13 14
15 16 17 18	43.14 44.12 45.12 46.13 47.16	28.4 29.4 30.4 31.4 32.5	0,02460 .02463 .02466 .02468 .02471	6.562 6.425 6.291 6.161 6.034	40.66 40.62 40.57 40.52 40.48	0,1524 .1556 .1590 .1623 0,1657	59.2 60.3 61.4 62.5 63.6	557.1 556.3 555.5 554.7 553.9	616.3 616.6 616.9 617.2 617.5	0.1323 .1346 .1369 .1392 .1392 .1392	1.3062 1.3043 1.3025 1.3006 1.2968	15 16 17 18 19
												1

* Inches of mercury below one standard atmosphere.

Figure 2-2A Properties of Saturated Liquid and Vapor of R-717

TEMP	PRES	SURE	VOL	UME	DENS	ITY	E	ENTHALPY	**	ENTRO) PY **	TEMP
F	1b per	sq in	cuft	per 1b	1b per	cuft		Stuper 1	D	Btu per ()	ib) (⁰ R)	F
t	Absolute P	Gage P	Liquid ^V f	Vapor ^V g	Liquid ^{1/v} f	Vapor 1/vg	Liquid ^h f	Latent ^{. h} fg	Vapor hg	Liquid ^S f	Vapor ^S g	t
20 21 22 23 24	48.21 49.28 50.36 51.47 52.59	33.5 34.6 35.7 36.8 37.9	0.02474 .02477 .02480 .02483 .02483 .02485	5.910 5.789 5.671 5.556 5.443	40.43 40.38 40.34 40.29 40.25	0.1692 .1728 .1763 .1800 .1837	64.7 65.8 66.9 68.0 69.1	553.1 552.2 551.4 550.6 549.8	617.8 618.0 618.3 618.6 618.9	0.1437 .1460 .1483 .1505 .1528	1.2969 1.2951 1.2933 1.2915 1.2897	20 21 22 23 24
25	53.73	39.0	0.02488	5.334	40.20	0.1875	70.2	548.9	619.1	0.1551	1.2879	25
26	54.90	40.2	.02491	5.227	40.15	.1913	71.3	548.1	619.4	.1573	1.2861	26
27	56.08	41.4	.02494	5.123	40.11	.1952	72.4	547.3	619.7	.1596	1.2843	27
28	57.28	42.6	.02497	5.021	40.06	.1992	73.5	546.4	619.9	.1618	1.2825	28
29	58.50	43.8	.02500	4.922	40.01	.2032	74.6	545.6	620.2	.1641	1.2808	29
30	59.74	45.0	0.02503	4.825	39.96	0.2073	75.7	544.8	620.5	0.1663	1.2790	30
31	61.00	46.3	.02506	4.730	39.92	.2114	76.8	543.9	620.7	.1686	1.2773	31
32	62.29	47.6	.02509	4.637	39.87	.2156	77.9	543.1	621.0	.1708	1.2755	32
33	63.59	48.9	.02512	4.547	39.82	.2199	79.0	542.2	621.2	.1730	1.2738	33
34	64.91	50.2	.02515	4.459	39.77	.2243	80.1	541.4	621.5	.1753	1.2721	34
35 36 37 38 39	66.26 67.63 69.02 70.43 71.87	51.6 52.9 54.3 55.7 57.2	0.02518 .02521 .02524 .02527 .02530	4.373 4.289 4.207 4.126 4.048	39.72 39.68 39.63 39.59 39.59 39.54	0.2287 .2332 .2377 .2423 .2470	81.2 82.3 83.4 84.6 85.7	540.5 539.7 538.8 537.9 537.0	621.7 622.0 622.2 622.5 622.7	0,1775 .1797 .1819 .1841 .1863	1.2704 1.2686 1.2669 1.2652 1.2635	35 36 37 38 39
40	73.32	58.6	0.02533	3,971	39.49	0.2518	86.8	536.2	623.0	0.1885	1.2618	40
41	74.80	60.1	.02536	3,897	39.44	.2566	87.9	535.3	623.2	.1908	1.2602	41
42	76.31	61.6	.02539	3,823	39.39	.2616	89.0	534.4	623.4	.1930	1.2585	42
43	77.83	63.1	.02542	3,752	39.34	.2665	90.1	533.6	623.7	.1952	1.2568	43
44	79.38	64.7	.02545	3,682	39.29	.2716	91.2	532.7	623.9	.1974	1.2552	44
45 46 47 48 49	80.96 82.55 84.18 85,82 87.49	66.3 67.9 69.5 71.1 72.8	0.02548 .02551 .02554 .02557 .02557 .02560	3.614 3.547 3.481 3.418 3.355	39.24 39.20 39.15 39.10 39.05	0,2767 .2819 .2872 .2926 .2981	92.3 93.5 94.6 95.7 96.8	531.8 530.9 530.0 529.1 528.2	624.1 624.4 624.6 624.8 625.0	0,1996 .2018 .2040 .2062 .2083	1.2535 1.2519 1.2502 1.2486 1.2469	45 46 47 48 49
50	89.19	74.5	0.02564	3.294	39.00	0.3036	97.9	527.3	625.2	0.2105	1.2453	50
51	90.91	76.2	.02567	3.234	38.95	.3092	99.1	526.4	625.5	.2127	1.2437	51
52	92.66	78.0	.02570	3.176	38.90	.3149	100.2	525.5	625.7	.2149	1.2421	52
53	94.43	79.7	.07574	3.119	38.85	.3207	101.3	524.6	625.9	.2171	1.2405	53
54	96.23	81.5	.02577	3.063	38.80	.3265	102.4	523.7	626.1	.2192	1.2389	54
55	98.06	83.4	0.02581	3.008	38.75	0.3325	103.5	522.8	626.3	0.2214	1.2373	55
56	99.91	85.2	.02584	2.954	38.70	.3385	104.7	521.8	626.5	.2236	1.2357	56
57	101.8	87.1	.02587	2.902	38.65	.3446	105.8	520.9	626.7	.2257	1.2341	57
58	103.7	89.0	.02590	2.851	38.60	.3508	106.9	520.0	626.9	.2279	1.2325	58
59	105.6	90.9	.02594	2.800	38.55	.3571	108.1	519.0	627.1	.2301	1.2310	59
60	107.6	92.9	0.02597	2.751	38.50	0.3635	109.2	518.1	627.3	0.2322	1.2294	60
61	109.6	94.9	.02600	2.703	38.45	.3700	110.3	517.2	627.5	.2344	1.2278	61
62	111.6	96.9	.02604	2.656	38.40	.3765	111.5	516.2	627.7	2365	1.2262	62
63	113.6	98.9	.02607	2.610	38.35	.3832	112.6	515.3	627.9	.2387	1.2247	63
64	115.7	101.0	.02611	2.565	38.30	.3899	113.7	514.3	628.0	.2408	1.2231	64
65 66 67 68 69	117.8 120.0 122.1 124.3 126.5	103.1 105.3 107.4 109.6 111.8	0.02614 .02618 .02621 .02625 .02625 .02628	2.520 2.477 2.435 2.393 2.352	38.25 38.20 38.15 38.10 38.05	0.3968 .4037 .4108 .4179 .4251	114.8 116.0 117.1 118.3 119.4	513.4 512.4 511.5 510.5 509.5	628.2 628.4 628.6 628.8 628.9	0.2430 .2451 .2473 .2494 .2515	1.2216 1.2201 1.2186 1.2170 1.2155	65 66 67 68 69
70 71 72 73 74	128.8 131.1 133.4 135.7 138.1	114.1 116.4 118.7 121.0 123.4	0.02632 .02636 .02639 .02643 .02643 .02647	2.312 2.273 2.235 2.197 2.161	38.00 37.95 37.90 37.85 37.79	0.4325 .4399 .4474 .4551 .4628	120.5 121.7 122.8 124.0 125.1	508.6 507.6 506.6 505.6 504.7	629.1 629.3 629.4 629.6 629.8	0.2537 .2558 .2579 .2601 .2622	1.2140 1.2125 1.2110 1.2095 1.2080	70 71 72 73 74
75	140.5	125.8	0.02650	2.125	37.74	0.4707	126.2	503.7	629.9	0.2643	1.2065	75
76	143.0	128.3	02654	2.089	37.69	.4786	127.4	502.7	630.1	.2664	1.2050	76
77	145.4	130.7	02657	2.055	37.64	.4867	128.5	501.7	630.2	.2685	1.2035	77
78	147.9	133.2	02661	2.021	37.58	.4949	129.7	500.7	630.4	.2706	1.2020	78
79	150.5	135.8	02665	1.988	37.53	.5031	130.8	499.7	630.5	.2728	1.2006	79
80	153.0	138.3	0.20668	1.955	37.48	0.5115	132.0	498.7	630.7	0.2749	1.1991	80
81	155.6	140.9	.02672	1.923	37.43	.5200	133.1	497.7	630.8	.2769	1.1976	81
82	158.3	143.6	.02676	1.892	37.37	.5287	134.3	496.7	631.0	.2791	1.1962	82
83	161.0	146.3	.02680	1.861	37.32	.5374	135.4	495.7	631.1	.2812	1.1947	83
84	163.7	149.0	.02683	1.831	37.26	0.5462	136.6	494.7	631.3	0.2833	1.1933	84

Figure 2-2B Properties of Saturated Liquid and Vapor of R-717

TEMP F	PRES 1b per	SURE sq in	VOL cuft	UME per 1b	DEN: 1b per	BITY r cu ft		ENTHALPY Btu per 11	**	ENTR Btu per (ОРУ** 1b) (⁰ R)	TEMP F
t	Absolute P	Gage p	Liquid ^V f	Vapor ^V g	Liquid ^{1/v} f	Vapor 1/v g	Liquid ^h f	Latent ^h fg	Vapor h	Liquid ^S f	Vapor ^S g	ι
85 86 87 88 89	166.4 169.2 172.0 174.8 177.7	151.7 154.5 157.3 160.1 163.0	0.02687 .02691 .02695 .02699 .02699 .02703	1.801 1.772 1.744 1.716 1.688	37.21 37.16 37.10 37.05 36.99	0.5552 .5643 .5735 .5828 .5923	137.8 138.9 140.1 141.2 142.4	493.6 492.6 491.6 490.6 489.5	631.4 631.5 631.7 631.8 631.9	0.2854 .2875 .2895 .2917 .2937	1.1918 1.1904 1.1889 1.1875 1.1860	85 86 87 88 89
90	180.6	165.9	0.02707	1.661	36.94	0,6019	143.5	488.5	632.0	0.2958	1,1846	90
91	183.6	168.9	.02711	1.635	36.89	.6116	144.7	487.4	632.1	.2979	1,1832	91
92	186.6	171.9	.02715	1.609	36.83	.6214	145.8	486.4	632.2	.3000	1,1818	92
93	189.6	174.9	.02719	1.584	36.78	.6314	147.0	485.3	632.3	.3021	1,1804	93
94	192.7	178.0	.02723	1.559	36.72	.6415	148.2	484.3	632.5	.3041	1,1789	94
95	195.8	181.1	0.02727	1.534	36.67	0.6517	149.4	483.2	632,6	0.3062	1.1775	95
96	198.9	184.2	.02731	1.510	36.62	.6620	150.5	482.1	632,6	.3083	1.1761	96
97	202.1	187.4	.02735	1.487	36.56	.6725	151.7	481.1	632,8	.3104	1.1747	97
98	205.3	190.6	.02739	1.464	36.51	.6832	152.9	480.0	632,9	.3125	1.1733	98
99	208.6	193.9	.02743	1.441	36.45	.6939	154.0	478.9	632,9	.3145	1.1719	99
100	211.9	197.2	0.02748	1.419	36.40	0,7048	155.2	477.8	633.0	0.3166	1.1705	100
101	215.2	200.5	.02752	1.397	36.34	,7159	156.4	476.7	633.1	.3187	1.1691	101
102	218.6	203.9	.02756	1.375	36.29	,7270	157.6	475.6	633.2	.3207	1.1677	102
103	222.0	207.3	.02760	1.354	36.23	,7384	158.7	474.6	633.3	.3228	1.1663	103
104	225.4	210.7	.02764	1.334	36.18	,7498	159.9	473.5	633.4	.3248	1.1649	104
105	228.9	214.2	0.02769	1.313	36.12	0.7615	161.1	472.3	633.4	0.3269	1,1635	105
106	232.5	217.8	.02773	1.293	36.07	.7732	162.3	471.2	633.5	.3289	1,1621	106
107	236.0	221.3	.20778	1.274	36.01	.7852	163.5	470.1	633.6	.3310	1,1607	107
108	239.7	225.0	.20782	1.254	35.96	.7972	164.6	469.0	633.6	.3330	1,1593	108
109	243.3	228.6	.02786	1.235	35.90	.8095	165.8	467.9	633.7	.3351	1,1580	109
110	247.0	232.3	0.02790	1.217	35.84	0.8219	167.0	466.7	633.7	0.3372	1.1566	110
111	250.8	236.1	.02794	1.198	35.79	.8344	168.2	465.6	633.8	.3392	1.1552	111
112	254.5	239.8	.02799	1.180	35.73	.8471	169.4	464.4	633.8	.3413	1.1538	112
113	258.4	243.7	.02804	1.163	35.67	.8600	170.6	463.3	633.9	.3433	1.1524	113
114	262.2	247.5	.02808	1.145	35.61	.8730	171.8	462.1	633.9	.3453	1.1510	114
115	266.2	251.5	0.02813	1.128	35,55	0.8862	173.0	460.9	633.9	0,3474	1.1497	115
116	270.1	255.4	.02817	1.112	35,50	.8996	174.2	459.8	634.0	.3495	1.1483	116
117	274.1	259.4	.02822	1.095	35,44	.9132	175.4	458.6	634.0	.3515	1.1469	117
118	278.2	263.5	.02826	1.079	35,38	.9269	176.6	457.4	634.0	.3535	1.1455	118
119	282.3	267.6	.02831	1.063	35,32	.9408	177.8	456.2	634.0	.3556	1.1441	119
120	286.4	271.7	0.02836	1.047	35.26	0.9549	179.0	455.0	634.0	0.3576	1.1427	120
121	290.6	275.9	.02840	1.032	35.20	0.9692	180.2	453.8	634.0	.3597	1.1414	121
122	294.8	280.1	.02845	1.017	35.14	0.9837	181.4	452.6	634.0	.3618	1.1400	122
123	299.1	284.4	.02850	1.002	35.08	0.9983	182.6	451.4	634.0	.3638	1.1386	123
124	303.4	288.7	.02855	0.987	35.02	1.0132	183.9	450.1	634.0	.3659	1.1372	124
125	307.8	293.1	0.02860	0.973	34.96	1.028	185.1	448.9	634.0	0.3679	1.1358	125

Figure 2-2C Properties of Saturated Liquid and Vapor of R-717

Tenp F	Abs P Gage Pre (Sat'	ressure 5. ssure 19.8 n Temp -63	0 psi in. Vac 1.11 F)	Abs Gage Pr (Sat	Pressure 6 ssure 17. 'n Temp -57	0 pm1 7 in. Vac 7.64 F)	Abs l Gage Pro (Sat	Pressure 7 essure 15. 'n Temp ~5	.0 pmi 7 in. Vac 2.88 F)	Abs l Gage Pro (Sat	ressure 8 Issure 13.0 'n Temp -40	.0 pm1 5 in. Vac 3.64 F)
t	v	h	8	٧	b	8	٧	h	8	¥	h	6
(Sat'n)	(49.31)	(588.3)	(1.4857)	(41.59)	(590.6)	(1.4703)	(36.01)	(592.5)	(1.4574)	(31.79)	(594.2)	(1.4462)
- 50 - 40 - 30 - 20 - 10	51.05 52.36 53.67 54.97 56.26	595.2 600.3 605.4 610.4 615.4	1.5025 .5149 .5269 .5385 .5498	42.44 43.55 44.64 45.73 46.82	594.6 599.8 604.9 610.0 615.1	1.4803 .4928 .5049 .5166 .5280	36.29 37.25 38.19 39.13 40.07	594.0 599.3 604.5 609.6 614.7	1.4611 .4739 .4861 .4979 .5094	32.52 33.36 34.19 35.01	598.8 604.1 609.3 614.4	1.4573 .4697 .4816 .4932
0 10 20 30 40	57.55 58.84 60.12 61.41 62.69	620.4 625.4 630.4 635.4 640.4	1.5608 .5716 .5821 .5925 .6026	47.90 48.98 50.05 51.12 52.19	620.1 625.2 630.2 635.2 640.2	1.5391 .5499 .5605 .5708 .5810	41.00 41.93 42.85 43.77 44.69	619.8 624.9 629.9 635.0 640.0	1.5206 .5314 .5421 .5525 .5627	35.83 36.64 37.45 38.26 39.07	619.5 624.6 629.7 634.7 639.8	1.5044 .5154 .5261 .5365 .5467
50 60 70 80 90	63.96 65.24 66.51 67.79 69.06	645.5 650.5 655.5 660.6 665.6	1.6125 .6223 .6319 .6413 .6506	53.26 54.32 55.39 56.45 57.51	645.2 650.3 655.3 660.4 665.5	1.5910 .6008 .6104 .6199 .6292	45.61 46.53 47.44 48.36 49.27	645.0 650.1 655.2 660.2 665.3	1.5727 .5825 .5921 .6016 .6110	39.88 40.68 41.48 42.28 43.08	644.8 649.9 655.0 660.1 665.2	1.5568 .5666 .5763 .5858 .5952
100 110 120 130 140	70.33 71.60 72.87 74.14 75.41	670.7 675.8 680.9 686.1 691.2	1 6598 .6689 .6778 .6865 .6952	58.58 59.64 60.70 61.76 62.82	670.6 675.7 680.8 685.9 691.1	1.6384 .6474 .6563 .6651 .6738	50.18 51.09 52.00 52.91 53.82	67014 675.5 680.7 685.8 691.0	1.6202 .6292 .6382 .6470 .6557	43.88 44.68 45.48 46.27 47.07	670.3 675.4 680.5 685.7 690.9	1.6044 .6135 .6224 .6312 .6399
150 160 170 180	76.68 77.95 79.21 80.48	696.4 701.6 706.8 712.1	1.7038 .7122 .7206 1.7289	63.87 64.93 65.99 67.05	696.3 701.5 706.7 712.0	1.6824 .6909 .6992 1.7075	54.73 55.63 56.54 57.45	696.2 701.4 706.6 711.9	1.6643 .6727 .6811 1.6894	47.87 48.66 49.46 50.25	696.1 701.3 706.5 711.8	1.6485 .6570 .6654 1.6737
				1				1	1	1	1	
Тещр	Abs P Gage Pre (Sat'	ressure 9. ssure 11.6 Temp -44	0 psi in. Vac .38 F)	Abs Gage P (Sat)	Pressure 1 ressure 9. n Tesp -41	D.0 psi B in. Vac .34 F)	Abs F Gage Pr (Sat)	Pressure 11 essure 7.5 n Temp -38	1.0 psi 5 in. Vac 1.14 P)	Abs Gage F (Sat	Pressure 1 ressure 5. 'n Temp -3	2.0 psi 5 in. Vac 5.16 P)
Temp F (Sat'n)	Abs P Gage Pre (Sat' (28.48)	ressure 9. ssure 11.6 a Temp -44 (595.7)	0 psi in. Vac .38 F) (1.4363)	Abs Gage P (Sat (25.81)	Pressure 1 ressure 9. 'n Temp -41 (597.1)	0.0 psi 5 in. Vac .34 F) (1.4276)	Abs F Gage Pr (Sat' (23.61)	ressure 11 essure 7.1 'n Temp - 38 (598.3)	1.0 psi 5 in. Vac 1.14 P) (1.4196)	Abs Gage F (Sat (21.77)	Pressure 1 ressure 5. 'n Temp -3 (599.4)	2.0 psi 5 in. Vac 5.16 F) (1.4124)
Temp F (Sat'n) - 40 - 30 - 20 - 10	Abs P Gage Pre (Sat' (28.48) 28.85 29.59 30.34 31.07	ressure 9. ssure 11.6 n Temp -44 (595.7) 598.3 603.6 608.9 614.0	0 psi in. Vac .38 F) (1.4363) 1.4426 .4551 .4551 .4788	Abs Gage P (Sat' (25.81) 26.58 27.26 27.92	Pressure 1 ressure 9. n Temp -41 (597.1) 603.2 608.5 613.7	0.0 psi 5 in. Vac .34 F) (1.4276) 1.4420 1.4420 4659	Abs E Gage Pr (Sat (23.61) 24.12 24.74 25.35	cessure 11 essure 7.5 n Temp -38 (598.3) 602.7 602.7 603.3		Abs Gage P (Sat (21.77) 22.07 22.64 23.20	Pressure 1 ressure 5. 'n Temp -3 (599.4) 602.3 607.7 613.0	2.0 psi 5 in. Vac 5.16 P) (1.4124) 1.4190 1.4190 4434
Temp P (Sat'n) - 40 - 30 - 10 - 10 - 20 300 - 40	Abs P Gage Pre (Sat' (28.48) 28.85 29.59 30.34 31.07 31.80 32.53 33.26 33.98 34.70	ressure 9. sure 11.6 n Temp -44 (595.7) 598.3 603.6 608.9 614.0 619.2 624.3 629.4 634.5 639.5	0 psi in, Vac .38 F) (1.4363) 1.4426 .4551 .4672 .4788 1.4902 .5012 .5119 .5224 .5327	Abs Gage P (Sat (25.81) 26.58 27.26 27.92 28.58 29.24 29.90 30.55 31.20	Pressure 1 ressure 9.4 n Temp -41 (597.1) 608.5 613.7 618.9 624.0 629.1 634.2 639.3	0.0 psi 5 in. Vac .34 F) (1.4276) .4659 1.4773 .4684 .4992 .5997 .5200	Abs F Gage Pr (Sat (23.61) 24.12 24.74 25.35 26.55 27.15 27.74 28.34	ressure 11 essure 7: n Tesp -34 (598.3) 602.7 608.1 613.3 618.5 623.7 628.9 634.0 639.1	1.0 psi in. Vac 3.14 P) (1.4196) (1.4300 .4423 .4542 1.4556 .4562 .4562 .4562 .5085	Abs Gage F (Sat (21.77) 22.07 22.64 23.20 23.75 24.86 25.41 24.86 25.41 25.95	Pressure 1 ressure 5. 'n Temp -3 (599.4) 602.3 607.7 613.0 618.2 623.4 628.6 633.7 638.9	2.0 psi 5 in. Vac 5.16 P) (1.4124) 4314 .4434 1.4549 .6661 .4770 .4877 .4980
Temp P (Sat'n) - 40 - 30 - 20 - 20 - 20 - 20 - 20 - 30 - 40 - 20 - 30 - 40 - 20 - 50 - 60 - 60 - 60 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9	Abs P Gage Pre (Sat' (28.48) 28.85 29.59 30.34 31.07 31.80 32.53 33.26 33.98 34.70 35.42 36.13 36.85 37.56 38.27	ressure 9. ssure 11.6 n Temp -44 (595.7) 598.3 608.9 614.0 619.2 624.3 629.4 634.5 639.5 644.6 649.7 654.8 859.9 665.0	0 psi in. Vac .38 F) (1.4363) 1.4426 .4551 .4672 .5012 .5012 .5119 .5224 .5327 1.5427 1.5427 .5526 .5623 .5718 .5812	Abs Gage P (Sat' (25.81) 26.56 27.26 27.26 28.58 29.24 29.90 30.55 31.20 31.85 32.49 33.14 33.78 34.42	Pressure 1 ressure 9, n Tesp -41 (597.1) 603.2 608.5 613.7 618.9 624.0 629.1 634.2 639.3 644.4 649.5 654.6 859.7 664.8	0.0 psi 5 n. Vac .34 F) (1.4276) (1.427	Abs F Gage Pr (Sat' (23.61) 24.12 24.74 25.35 26.55 27.15 27.15 27.74 28.34 28.93 29.52 30.10 30.69 31.28	ressure 11 essure 7: n Tesp -33 (598.3) 602.7 606.1 613.3 618.5 623.7 628.9 639.0 639.1 644.2 649.3 654.4 659.6 664.7	1.0 psi in. Vac 1.14 F) (1.4196) 1.4500 1.4520 1.4656 4876 4876 4872 5085 1.5187 5383 5479 5479 	Abs Gage F (Sat (21.77) 22.07 22.64 23.20 23.75 24.31 24.86 25.41 25.95 26.49 27.03 27.03 27.57 28.11 28.65	Pressure 1 ressure 5. 'n Temp -3 (599.4) 602.3 607.7 613.0 618.2 623.4 628.6 633.7 638.9 644.0 649.1 654.3 859.4 659.4	2.0 psi 5 in. Vac 5.16 P) (1.4124) 4314 .4434 .4434 1.4549 .4661 .4770 .4980 1.5082 .5182 .5279 .5375
Temp P (Sat'n) - 40 - 30 - 20 - 10 0 10 - 20 30 - 40 - 50 60 90 90 100 1100 120 130	Abs P Gage Pre (Sat' (28.48) 28.85 29.59 30.34 31.07 31.80 32.53 33.26 33.26 33.26 33.98 34.70 35.42 36.13 36.85 37.56 37.56 38.98 39.70 40.40 41.11 41.82	ressure 9. ssure 11.6 n Temp -44 (595.7) 598.3 603.6 608.9 614.0 619.2 624.3 629.4 634.5 639.5 644.6 649.7 655.8 649.6 659.9 665.0 670.1 675.3 680.4 685.6 690.7	0 psi in. Vac .38 F) (1.4363) 1.4426 .4551 .4672 .5012 .5012 .5012 .5119 .5224 .5327 1.5427 1.5427 1.5427 1.5428 .5633 .5612 1.5995 .6085 .6173 .6280	Abs Gage P (Sat' (25.81) 26.58 27.26 27.92 28.58 29.90 28.58 29.90 31.85 31.85 31.85 31.85 33.14 33.14 33.14 33.78 34.42 35.07 35.71 36.35 36.99 37.62	Pressure 1 ressure 9. n Temp -41 (597.1) 603.2 608.5 613.7 618.9 629.1 634.2 639.3 644.4 649.5 654.6 659.7 654.8 670.0 675.1 680.3 685.4 690.6	0.0 ps1 5 1n. Vac. .34 F) (1.4276) 1.4420 .4542 .4659 1.4773 .4884 .4992 .5097 .5200 1.5301 .5400 .5497 .5593 .5687 1.5779 .5970 .5960 .6049 .6136	Abs 5 Gage Pr (Sat' (23.61) 24.74 25.35 25.95 27.15 27.74 28.34 28.93 29.52 30.10 30.69 31.28 31.86 32.44 33.03 33.61 34.19	Tessure 11 essure 7: n Tesp - 33 (598.3) 602.7 608.1 613.3 613.3 634.0 639.1 634.0 639.1 644.2 649.3 654.6 664.7 669.8 857.0 860.1 665.3 660.1	1.0 psi 5 in. Vac .14 P) (1.4196) 1.4300 .4423 .4542 .4542 .4556 .4768 .4976 .4982 .5085 1.5187 .5286 .5383 .5479 .5573 1.5666 .55757 .5847 .5936 .6023	Abs Gage F (Sat (21.77) 22.64 23.20 23.75 24.31 25.95 26.49 27.03 27.57 26.49 27.03 27.57 28.11 28.65 29.19 29.72 30.26 30.79 31.33	Pressure 1 ressure 5. 'n Temp -3 (599.4) 602.3 607.7 613.0 618.2 628.6 633.7 638.9 644.0 649.1 659.4 6	2.0 psi 5 in. Vac 3.16 P) (1.4124) 1.4190 .4314 .4434 1.4349 .4461 .4770 .4877 .4980 1.5082 .5182 .5279 .5375 .5470 1.5562 .5654 .5743 .5833 .5920
Temp F (Sat'n) - 40 - 30 - 20 - 10 10 20 - 0 10 20 - 30 - 30 - 30 - 30 - 30 - 30 - 10 - 30 - 30	Abs P Gage Pre (Sat' (28.48) 28.85 29.59 30.34 31.07 31.80 32.53 33.26 33.98 34.70 35.42 36.13 36.85 37.56 37.56 37.56 38.98 38.97 38.98 34.70 40.40 41.11 41.82 42.53 43.24 43.95 44.65	ressure 9. saure 11.6 n Temp -44 (595.7) 598.3 603.6 608.9 614.0 619.2 624.3 639.5 639.5 644.6 649.7 654.8 659.9 665.0 670.1 675.3 680.4 685.6 690.7 695.9 706.4 711.7	0 psi in. Vac .38 F) (1.4363) 1.4426 4551 .4672 .5012 .5119 .5224 .5327 1.5427 1.5427 .5526 .5623 .5718 .5812 1.5995 .6085 .6173 .6260 1.6346 .6431 .6515 1.6598	Abs Gage P (Sat' (25.81) 26.58 27.26 27.92 28.58 29.24 29.90 30.55 31.20 31.85 32.49 33.14 33.14 33.78 34.42 35.71 36.35 36.99 37.62 38.90 38.54 40.17 40.81	Pressure 1: ressure 9. n Temp -41 (597.1) 603.2 608.5 613.7 624.0 629.1 634.2 639.3 644.4 649.5 654.6 659.7 664.8 670.0 675.1 680.3 685.4 690.6 695.8 701.1 706.3 711.6 9	0.0 psi 5 in. Vac .34 F) (1.4276) 1.4420 .4542 .4659 1.4773 .4884 .4992 .5097 .5200 1.5301 .5407 .5593 .5870 .5497 1.5779 .5870 .5987 .5870 .5870 .5983 .6474 .6335	Abs F Gage Pr (Bat' (23.61) 24.74 25.35 25.95 26.55 27.74 28.34 28.93 29.52 30.10 30.69 31.28 31.86 31.86 32.44 33.03 33.61 34.19 34.77 35.35 35.93 36.51 37.09	Tessure 1: essure 7: n Tesp - 33 (596.3) 602.7 608.1 633.7 639.1 644.3 659.6 664.7 669.8 675.0 665.7 706.2 711.5 711.5	1.0 psi 5 in. Vac .14 P) (1.4196) .4423 .4542 .4542 .4542 .4542 .4542 .4542 .5085 1.5187 .5286 .5383 .5473 .5286 .5383 .5473 .5286 .5387 .5286 .5383 .5473 .5286 .5383 .5473 .5286 .5387 .5286 .5387 .5286 .5387 .5286 .5387 .5286 .5387 .5286 .5387 .5286 .5387 .5286 .5387 .5286 .5387 .5286 .5387 .5286 .5387 .5286 .5387 .5286 .5387 .5286 .5387 .5286 .5387 .5286 .5387 .5286 .5387 .5286 .5387 .53847 .538	Abs Gage J (Sat (21.77) 22.64 23.20 23.75 24.31 25.95 26.49 27.03 27.57 28.11 28.65 29.19 29.72 30.26 30.79 31.33 31.86 32.39 32.92 33.46	Pressure 1 ressure 5. 'n Temp -3 (599.4) 602.3 607.7 613.0 618.2 623.4 628.6 633.7 638.9 644.0 649.1 659.4 659.4 664.5 669.7 674.8 660.0 665.2 690.4 695.6 700.8 700.8 700.8 700.8 700.8 700.8 700.6 7	2.0 psi 5 in. Vac 5.16 F) (1.4124) 1.4549 1.4549 1.4549 1.4549 1.4549 1.4549 1.5582 1.

Figure 2-3 Properties of Superheated Vapor for R-717

Cogitation:

Summary of Given Conditions from the Specifications and P-H Diagram Composition for the Sstem:

Refrigerant: R-717

Evaporators:

Load No. 1:	260 TR,	-40°F (10.4 Pisa)
Load No. 2:	30 TR,	-35°F (12.05 Psia)
Load No. 3:	80 TR,	20°F (48.2 Psia)

Condensing Temperature: 105°F (228.9 Psia)

This system shall be compound system by using screw compressors with no economizer.

Flash type intermediate Intercooler with coil for liquid subcooling shall be used:

Intermediate temperature:	15°F (43.1 Psia)
Approach:	15°F

All the temperatures indicated are saturated temperature; the saturated refrigerant pressures are obtained from the refrigerant property chart of Figure 2-2.

Figure-2-4 Determination of CT, ET and Intermediate Temperature Lines on P-H Diagram Three (3) basic lines for this compound system is shown on Figure 2-4; one is the condensing condenser line of (A)-(B) at 105° F; one is the intermediate temperature line of (C)-(D) at 15° F and another line of (E)-(F) represents the lowest evaporative temperature at -40° F.

The specification indicates that a coil type liquid subcool flash intermediate intercooler is to be used and the approach is 15° F, that means the liquid leaving the subcooler shall be 15° F higher than the intermediate temperature (15° F), that is the liquid is subcooled from 105° F to 30° F by the liquid subcooling coil, it is the point (A) leaving the intermediate intercooler as shown in the Figure 2-4.

Figure 2-5 Liquid Subcooling and Liquid Feed Lines on P-H Diagram

From Figure 2-5, the saturated liquid to intermediate intercooler shall be from the condenser (or high pressure receiver), (G)-(C) represents the throttling line for the intermediate intercooler; the liquid for the lowest temperature evaporator No.1 shall be from the subcooled liquid leaving the intermediate intercooler, which is from point (A); the throttling process is represented by line (A)-(E) as shown in the P-H diagram of Figure 2-5.

Figure 2-6 shows the ET line of (J)-(K) for ET of -35°F for the Evaporator No. 2 and the line of (H)-(I) for ET 20°F for Evaporator No. 3. It is more logical to direct the liquid for 20°F evaporator from the point (G) and the liquid for the -35°F evaporator shall be from the subcooled liquid of point (A) as shown in the P-H diagram.

Figure 2-6 No. 2 and No. 3 Refrigeration Load Lines

See the Figure 2-6 and 2-7, draw a line (O)-(Q), it represents the discharge pressure drop for the high stage screw compressor; line (D)-(N) is the suction pressure drop and suction superheat penalties for the suction for the high stage compressor; the line (O)-(N) is the adiabatic compression line of the high stage compressor.

Likewise, the lines (M)-(P) and (F)-(L) are the penalties for the low stage compressor and the line (M)-(L) is the adiabatic compression line for the low stage compressor as shown in Figure 2-7..

Figure 2-7 High Stage and Low Stage Compressor Lines and Penalties

The suction gas from the evaporator No. 3 is to be returned to the high stage compressor and the suction gas from evaporator No. 2 is to be combined with the suction gas from evaporator No. 1 and returned to the suction of the low stage compressor at point (L).

Composing the Refrigerant Flow Diagram:

Refrigerant flow diagram starts from the major components needed for the system. The refrigerant flow diagram is structured, composed and laying out exactly by following with the system design concepts and thermodynamic bases which were used to develop the P-H diagram for the system. The first step is to arrange the components to a relative array position as shown in Figure 2-8.

Figure 2-8 Major Components Array for the Refrigeration System

The major components shown in Figure 2-8 are water cooled condenser, high stage compressor, booster compressor and intermediate coil type intercooler for this compound refrigeration system as indicated in the P-H diagram of Figure 2-7; plus high pressure receiver and suction trap. Three suction lines from three evaporators are also shown.

Some of the components such as receiver, suction trap, valves and etc. are the hidden items and it is not shown in the P-H diagram, because it does not affect the thermodynamic property of the refrigeration system. But, it is important for the good application practice and operation if these items are included in the refrigeration system design. These items are to be shown in the refrigerant flow diagram.

Figure 2-9 Composing the Refrigerant Flow Diagram for the System

Connecting the components in accordance with the design logics established by the P-H diagram of Figure 2-7, the refrigerant flow diagram for system is completed and it is shown in Figure 2-9, this is the simplified version of the refrigerant flow diagram for the system conforming to the functions outlined in the P-H diagram. Suction pressure regulating valve is used for suction line from the evaporator No. 2 and No. 3 to regulate the pressure difference when merge to the compressor suction.

P-H diagram is to show if the system designed meets with thermodynamic feasibilities and the refrigerant flow diagram is to show if the mechanical working system reflects the thermodynamic theory and is in compliance to the P-H diagram; the refrigerant flow diagram is also to show the functions of the refrigeration system.

Calculating the Refrigerant Flows and the Power Consumptions:

Compressor Efficiency:

Adiabatic Efficiency:	75%
Mechanical Efficiency:	97%

Booster Compressor Suction Conditions:

Suction Pressure: 10.4 - 1.6 - 0.8 = 8 Psia Suction Temperature: $-40 + 10 = -30^{\circ}$ F

Booster Compressor Discharge Pressure: 43.1 + 3.5 + 0.4 = 47 Psia

High Stage Suction Conditions:

Suction Pressure: 43.1 - 0.5 - 0.6 = 42 Psia Suction Temperature: $15 + 5 = 20^{\circ}$ F

High Stage Discharge Pressure: 228.90 + 2.8 + 4.3 = 236 Psia

Booster (Low Stage) Compressor Calculation:

See Figure 2-10, the enthalpy values are shown for points (K), (F), (G) and (A).

FLOW (1) = Refrigerant Flow from Evaporator No. 1, 260 TR at ET of -40° F

$$= \frac{200}{(H_F - H_E)} \times TR$$
$$= \frac{200}{597.6 - 75.7} \times 260$$

= 99.64 Lbs/Min

Figure 2-10 Enthalpy Values for Refrigerant for Evaporator Load No. 1 and No. 2

FLOW (2) = Refrigerant Flow from 30 TR load at -35° F, Evaporator No. 2.

$$= \frac{200}{(H_{K} - H_{J})} \times TR$$
$$= \frac{200}{599.5 - 75.7} \times 30$$
$$= 11.45 \text{ LBS/MIN}$$

FLOW (B) = Total Refrigerant Flow for the Booster Compressor

Adiabatic head for the booster compressor, HEAD(B):

 $HEAD(B) = (H_M - H_L) \times 778$ = (712 - 604.1) x 778 = 107.8 x 778 = 83,868 FT.

Power consumption for the booster compressor, BHP (B):

Adiabatic EFF. = 75% Mechanical EFF.= 97%. FLOW(B) `= 111.09 Lbs/Min HEAD(B) `= 83,868 Ft. BHP(B) = $\frac{FLOW(B) \times HEAD(B)}{33000 \times EFF}$ = $\frac{FLOW(B) \times HEAD(B)}{33000 \times 0.75 \times 0.97}$ = $\frac{111.09 \times 83868}{33000 \times 0.75 \times 0.97}$ = 388.1 BHP

Refrigerant Flow to High Stage Compressor and Power Consumption Calculation:

See Figure 2-11, the enthalpy values are shown for points (I) and (D). From the Figure 2-11, it shows that the gas flows to the suction of the high stage compressor comes from four sources as the following:

(1) First is the refrigerant flow from the discharge from the booster compressor:

$$= 99.64 + 11.45 = 111.09$$
 Lbs/Min

(2) Second refrigerant flow is from the evaporator #3 of 80 TR load at ET 20°F:

$$= \frac{200}{617.8 - 161.1} \times 80$$

= 35.03 Lbs/Min

Figure 2-11 Enthalpy Values for Refrigerant for Evaporator Load No. 3 & Intermediate Temperature

(3) The third source is the refrigerant flow required to subcool the liquid 105°F to 30°F from the intermediate intercooler:

Liquid to be subcooled = 111.09 Lbs/Min.

Heat load for the subcooling:

 $= \frac{111.09 \text{ x} (161.1 - 75.7)}{200}$ = 47.8 TR Refrigerant flow = $\frac{200}{616.3 - 161.1} \text{ x 47.8}$ = 20.8 Lbs/Min (4) The fourth source is the refrigerant flow required to desuperheat the discharge gas from low stage compressor to saturation point (D):

Gas to be desuperheated = 111.09 Lbs/Min.

Enthalpy at the point of low stage compressor discharge = H_X

$$H_{X} = H_{L} + \frac{H_{M} - H_{L}}{0.75 \times 0.97}$$
$$= 604.1 + \frac{712 - 604.1}{0.75 \times 0.97}$$
$$= 752.42 \text{ Btu/Lb}$$

Refrigerant load for desuperheating:

 $= \frac{111.09 \text{ x} (752.42 - 616.3)}{200}$ = 75.6 TR

Refrigerant flow = $\frac{200}{616.3 - 161.1}$ x 75.6

Total Suction flow for the high stage compressor = FLOW (H):

= 33.6 Lbs/Min

FLOW (H) = 111.09 + 35.03 + 20.8 + 33.22= 200.14 Lbs/Min

Cross check & verification by using heat rejection method:

Heat rejection from booster compressor:

= BHP x 2545 + TR x 12000

= 388.1 x 2545 + (30 + 260) x 12000 = 4,467,715 Btu/Hr

Or 372.3 TR for the high stage compressor.

Total approximate refrigerant flow from low stage compressor to the high stage compressor.

$$= \frac{200}{616.3 - 161.1} \times (372.3 + 80) = 198.7 \text{ Lbs/Min} \quad (O.K.)$$

Adiabatic head for the high stage compressor, HEAD(H):

 $HEAD(H) = (H_0 - H_N \times 778)$ = (727 - 619.8) x 778 = 107.2 x 778 = 83,402 Ft.

Power consumption for the high stage compressor, BHP (H):

Adiabatic EFF. = 75% Mechanical EFF.= 97%.

FLOW = 200.14 Lbs/Min HEAD = 83,402 Ft.

 $BHP(H) = \frac{FLOW(H) \times HEAD(H)}{33000 \times 0.75 \times 0.97}$ $= \frac{200.14 \times 83402}{33000 \times 0.75 \times 0.97} = 695 BHP$

Condenser heat rejection:

The enthalpy value for the gas discharged from the high stage compressor = H_Y

$$H_{Y} = H_{N} + \frac{H_{O} - H_{N}}{0.75 \times 0.97}$$
$$= 619.8 + \frac{727 - 619.8}{0.75 \times 0.97}$$

Refrigerant flow = 200.14 Lbs/Min

Condenser heat rejection:

Cross check and verification:

Condenser heat rejection:

= (260 + 30 + 80) x 12000 + (388 + 678) x 2545 = 4,440,000 + 2,712,970 = 7,152,970 Btr/Hr = 7,153 MBH

The oil cooling is by oil injection instead of water cooled without capacity and power input penalties as indicated by the specification. Therefore, the heat rejection from the compressor is the total heat input to the compressor.

Summary of design approach and consideration:

(A) Design considerations:

The brine coolers for evaporator No. 2 and No.3 are provided by the user, therefore it shall be the user's responsibility to design the brine cooler to meet the requirements to cool the brine from the entering and leaving temperatures as required. The refrigeration unit is to provide the ammonia liquid for the brine cooler to fulfill the refrigeration load with the design evaporative temperature for each of the brine cooler.

The condenser is also provided by the user, therefore, no need to worry about this item. However, the refrigeration unit is to be designed for condensing temperature of 105° F.

2-stage compression screw refrigeration is used. The low stage booster compressor is to handle the -40°F load. The -35°F load shall be combined with the -40°F load with a back pressure regulating valve (BPRV).

The 20°F load shall be channeled to the intermediate intercooler before entering into the suction of the high stage compressor for liquid vapor separation. A BPRV is to be installed for the 20°F evaporative temperature control.

The compressor discharge from the high stage shall be 236 Psia with the discharge pressure drop of 3.5 Psi.

The booster compressor suction shall be 8 Psia and -30°F. 0.81 Psi suction pressure drop and 10°F superheat are included.

A suction scrubber is recommended for the -40°F and -35°F loads before the booster compressor.

(B) Detailed P-H diagram for the compound system is shown below

(C) Detail refrigerant flow diagram for the compound refrigeration system is shown below:

This is a simplified version of the flow diagram, a complete P&ID shall include the instrumentations and controls for the system.

(D) Summary Data Sheet:

Maximum superheat and pressure drop for the	
Evaporator #3:	
Max. pres. drop, Psi	5.1 Psi
Max. superheat, °F	15 °F
Booster Compressor Suction Conditions:	
Suction Pressure, Psia	8 Psia
Suction Temp., °F	-30°F
Suction Flow, Lbs/Min	111.09 Lbs/Min
Suction Flow, ACFM	3,706 ACFM
High Stage Compressor Suction Conditions:	
Suction Pressure, Psia	42Psia
Suction Temp., °F	20°F
Suction Flow, Lbs/Min	200.14 Lbs/Min
Suction Flow, ACFM	1,369 ACFM
Power Consumption:	
Booster Compressor, BHP	388 BHP
High Stage Comp., BHP	695 BHP
Heat Rejection from condenser:	7,277,691 Btu/Hr
	Or 7,278 MBH
Refrigerant flow to the condenser: Lbs/Min	200.14 Lbs/Min